Introduction to Spatial Analysis and Spatial Modeling
Benefits of raster GIS

- ArcGIS raster support
- The ArcGIS Spatial Analysis extension
 - The seven interfaces
 - Installation and licensing
- Exercise 1
 - Introduction to the spatial analyst interfaces
Benefits of raster GIS

- **Location-based data model (cells)**
 - Better than features for many types of analyses

- **Especially sued for**
 - Surface creation and analysis
 - Elevation, rainfall, population
 - Location models
 - Best site for business, hospital
 - Distance measurement
 - Proximity, mobility, best path
 - Modeling movement
 - Flood inundation, fire spread
ArcGIS raster support

- **ArcGIS has out-of-the-box raster support**
 - Use with ArcMap
 - Draw, query, georeference
 - Manage with ArcCatalog
 - Copy, rename, delete,
 - Manipulate with ArcToolbox
 - Convert, project, merge, clip,
 - Store with a geodatabase
 - Raster datasets and catalogs
- **Add Spatial Analyst for analysis**
Spatial Analysis tools

- Over 100 tools organized into toolsets

[Image of toolset interface]

Seven interfaces for Spatial Analyst

- 1. ArcToolbox
 - Dialogs for all tools
- 2. Command Line
 - Type commands
- 3. Model Builder
 - Visual modeling
- 4. Scripts
 - Write easy programs
- 5. Spatial Analyst Toolbar
 - Dialogs for common tools
- 6. ArcObjects
 - More programming power
- 7. Map Algebra Tools
 - For all interfaces

- Most become Map Algebra
- Evaluated by Raster Engine

These are all part of the geoprocessing framework
The Spatial Analyst toolbar

Has its own environment (not part of the geoprocessing)

Can compose Map Algebra expressions

Dialogs for commonly used tools
Spatial Analyst and ArcToolbox

- Uses geoprocessing environments (right-click to set)
- Has Map Algebra tools

Notes:
- Opens ArcToolbox
- Hints and links to help
Spatial Analyst and Command Line

- Opens the Command line
- Command Interface for tools
- Supports code completion

Supports code completion
Spatial Analyst and Model Builder

- Click tools to set parameters
- Set model and diagram properties
- Save and run model
- Edit and change
- Uses geoprocessing environment

- Add a new toolbox
- Add a new model
Spatial Analyst and scripts

- Many languages are supported (Python shown)
- Is object-oriented (But easy!)
- Uses geoprocessor tools, environments
- May add scripts to ArcToolbox
- May use scripts in models
- Has a Map Algebra tool

```python
# Spatial Analyst and scripts example

# Import system modules
import sys, string, os, win32com.client

# Create the Geoprocessor object
gp = win32com.client.Dispatch("esriGeoprocessing.IGpDispatch.1")

# Check out any necessary licenses
gp.CheckOutExtension("spatial")

# Load required toolboxes...
gp.AddToolbox("C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx")

# Local variables...
cstopath = "c:\stop"  # Stop file path
Output_polyline_features = "c:\rice\Contour_stopol.shp"
Output_raster_2 = "c:\rice\HillShap_topol"

# Process: Aspect...
gp.Aspect_sa(cstopath, Output_raster)

# Process: Contour...
gp.Contour_sa(cstopath, Output_polyline_features, ",", "0", "1")

# Process: Hillshade...
gp.HillShade_sa(cstopath, Output_raster_2, "315", "45", "NO_SHADERS", "1")
```
Spatial Analyst and ArcObjects

- Many languages are supported (VBA shown)
- Is object-oriented (Powerful, but a lot of classes to learn)
- Must set your environments
- Build stand-alone applications, or build tools, or ...?
- Has classes for Map Algebra

```python
ctopobath = "ctopobath"
Output_raster = "D:/rice/Aspect ctopol"
Output_polyline_features = "D:/rice/Contour_ctopobal.shp"
Output_raster_2 = "D:/rice/HillSha_ctop1"

' Process: Aspect...
gp.Aspect_sa ctopobath, Output_raster

' Process: Contour...
gp.Contour_sa ctopobath, Output_polyline_features, ",", "0", "1"

' Process: Hillshade...
gp.HillShade_sa ctopobath, Output_raster_2, "315", "45", "NO_SHADOWS", "1"
```

Supports code completion
Spatial Analyst and Map Algebra

- An analysis language for raster data
 - Uses math-like expressions with operators and functions:

 \[
 \text{SmoothHill} = \text{Hillshade}(\text{FocalMean}([\text{Elevation}] \times 0.3048))
 \]

 - Can be more efficient than Spatial Analyst tools (one expression may use many functions and operators)

Spatial Analyst tools and Map Algebra

- Most tools implement Map Algebra functions and operators
 - Tools provide dialog and command line interfaces
 - Most tools implement a single function or operator (some implement many functions)
- Tools exist for writing Map Algebra expressions
Managing the extension

Start > Programs > ArcGIS > Desktop Administrator
- Select software product
- Select license manager
- Check license availability

Tools > Extensions
- Enable or disable extensions
Resources for self study

- **Online Help**
 - For ArcGIS Desktop users and for developers

- **Documentation**

- **ESRI Support Center**
 - Software information
 - Knowledge Base
 - Downloads
 - User forums
 - Developer support and tools

- **Virtual Campus courses**
 - Self-learning modules
Exercise 1 overview

- Check the license in the Desktop Administrator
- Enable the extension in ArcMap
- Run a tool with the Spatial Analyst toolbar
- Run a tool with the ArcToolbox
- Run a tool with the Command Line window
- Build and run a model with the Model Builder
- Create and run a script and view its code
- Run and view a VBA program that uses ArcObjects
- Write and run a Map Algebra expression
- Install several ArcObjects-based utilities (you will use them in future exercises)