

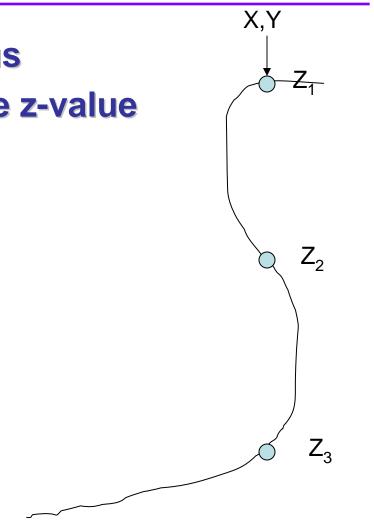
Interpolation Tools

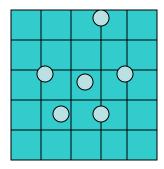
Lesson 5 overview

- Concepts
 - Sampling methods
 - Creating continuous surfaces
 - Interpolation
 - Density surfaces in GIS
- □ Interpolators
 - IDW, Spline, Trend, Kriging, Natural neighbors
 - TopoToRaster
- □ Assessing accuracy
- ☐ Exercise 5

Creating surfaces

- ☐ Interpolate from sample points
- ☐ Example: Terrain, pH value, water quality
- □ Convert from another format
- Example: USGS Digital Elevation Model (DEM)
- **☐** Four ways to represent surfaces:



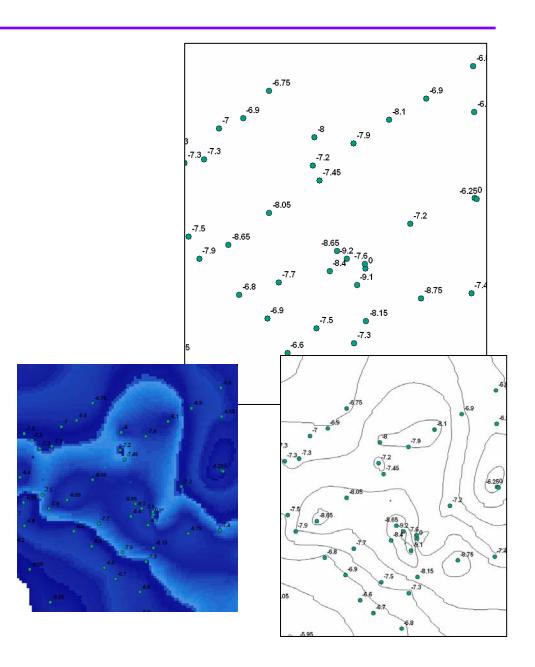

Functional surface

- □ Considered to be continuous
- ☐ For an x,y location, only one z-value
- NOT a true 3D model: 2 ½
 dimensional
- ☐ Can be used to represent:
 - Terrestrial surfaces
 - Statistical surfaces
 - Mathematical surfaces

What is Interpolation?

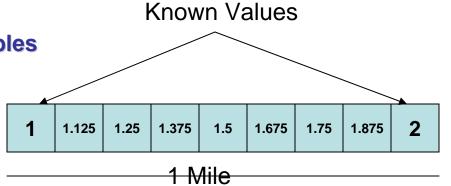
- □ Procedure to predict value at unsampled locations within sampled region
- Based on the principle of spatial autocorrelation or spatial dependence
 - Spatial autocorrelation measures degree of relationship/dependence between near and distant objects

□ Implements Tobler's First law of Geography:


"everything is related to everything else, but close things are closely related"

Elements of interpolation

- □ The known points (samples)
 - Sample factors size, limits, location ,outliers
- □ The unknown points (interpolated values)
 - Interpolation models:
 - Deterministic create surfaces from measured points, based on either the extent of similarity (IDW) or degree of smoothing (Trend).
 - Geostatistical based on statistics (Kriging) with advanced prediction modeling, includes measure of certainty or accuracy of predictions.
- □ Different interpolation methods will (almost always) produce different results.


Sampling a surface

- ☐ Perfect surface requires infinite number of measurements
- ☐ Therefore samples need to be significant and random, if possible
- ☐ Error increases away from sample points

Linear interpolation

- □ Interpolation of cell values
 - A best estimate between samples
- May consider:
 - Distance
 - Weight
- ☐ Used for:
 - Predicting
 - Forecasting
 - Describing
 - Understanding
 - Calculating
 - Estimating
 - Analyzing
 - Explaining

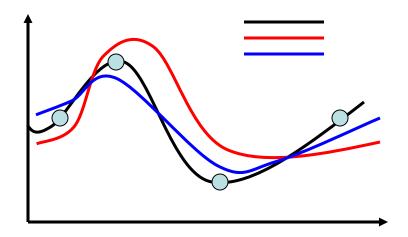
Controlling sample points for interpolation

- □ IDW, Spline & Kriging support control of sample numbers
- **□** Sample methods:
 - Nearest neighbors you choose how many
 - Search radius variable or max distance
- □ Returns NoData if insufficient samples

Barriers to interpolation

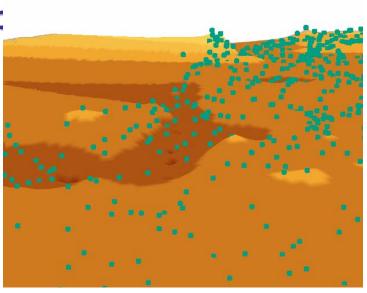
- □ Barriers represented by line feature classes
 - Examples: Faults, cliffs, levees, depth to ground water
- Restricts samples to same side of line as cell
- □ IDW, KRIGING ()support barriers

Interpolating unknown values

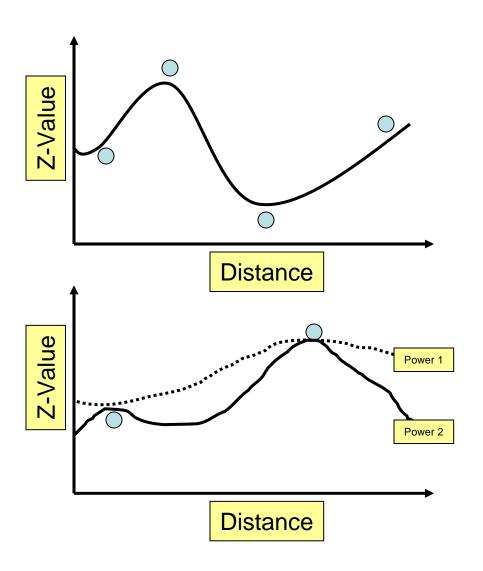

- □ Input
 - Point dataset
 - x,y coordinates in a text file
- Output
 - Floating-point raster
- □ Tools

Interpolation types

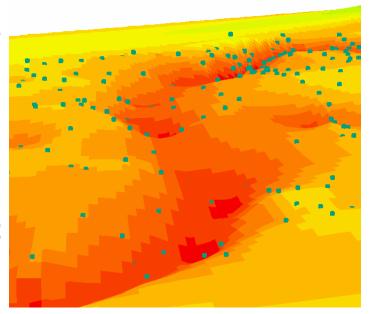
- Deterministic or Geostatistical
- **□** Deterministic:
 - Surface created from samples based on extent of similarity or degree of smoothing.
 - E.g., IDW, Spline, Trend


□ Geostatistical

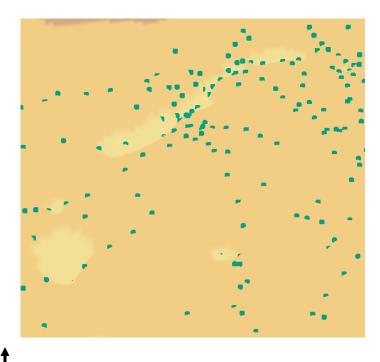
- Spatial variation modeled by random process with spatial autocorrelation
- Creates error surface indication of prediction validity
- E.g., Kriging

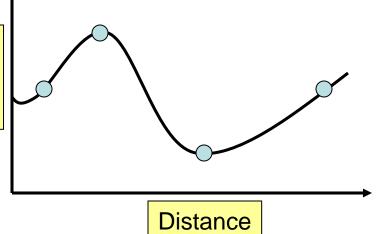

IDW

- □ Deterministic Interpolation technique
- Influence of known values diminishes with distance
- ☐ Surface will not pass through samples (averaging)
- □ Power value and barrier can t
- Sample subset defined by
 - Nearest neighbor
 - Fixed radius


IDW parameters

- □ Best for dense evenly spaced samples
- ☐ No estimates above max or below mm sample value
- Can adjust relative influence or power of samples

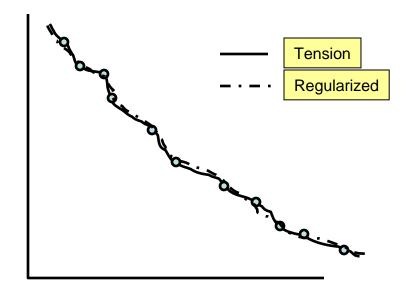

Natural Neighbor Interpolation


- ☐ Uses Thiessen polygon network of scatter points.
- Interpolation by weighted average of surrounding or neighboring data points
 - Area-based weights
- □ Cell value is "natural neighbor" of interpolation subset
- □ Resulting surface analogous to a taut rubber sheet stretched to meet all the data.
- □ Works well with clustered scatter points
- Efficiently handles large numbers of input points

Spline

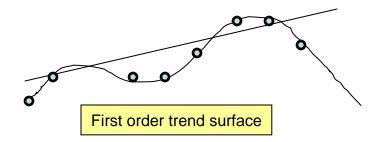
- ☐ The surface passes exactly through the sample points
 - Fits a minimum-curvature surface through the input points
 - Like a rubber sheet that is bent around the samples
 - Best for smoothly varying surfaces (e.g., temperature)
 - Can predict ridges and valleys

Z-Value


Choosing a spline type

□ Regularized

- A looser fit, but may have overshoots and undershoots
- Generally makes a smoother surface
- Higher values of {weight} smooth more

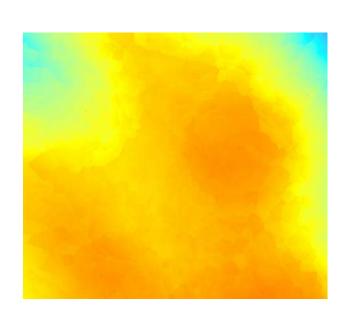

□ Tension

- Forces the curve
- Generally makes a coarser surface
- Higher values of {weight} coarsen more than lower values

Trend

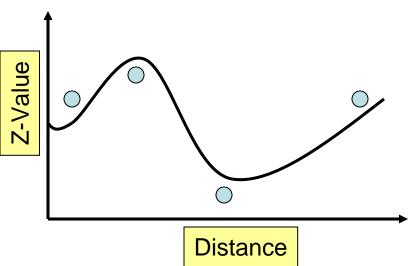
- **□** Inexact interpolator:
 - Surface usually not through sample points
- Detects trends in the sample data
 - Similar to natural phenomena, which usually vary smoothly.
- ☐ Statistical approach:
 - Allows statistical significance of the surface and uncertainty of the predicted values to be calculated
 - Fits one polynomial equation to entire surface

Order 1: No curve (flat tilted surface)

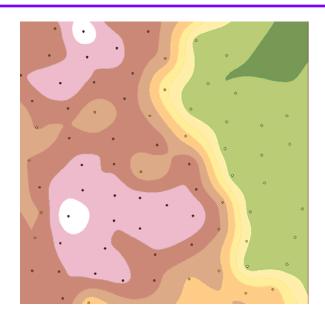

2: One curve

3: Two curves

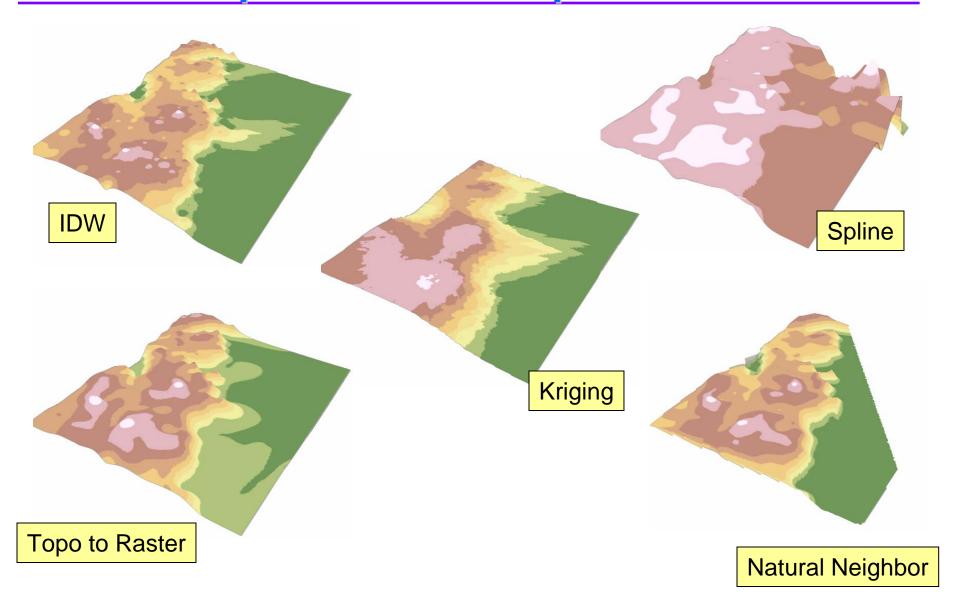
4: Three curves, etc.


Kriging

- □ A powerful statistical technique
 - Predicted values derived from measure of relationship in samples
 - Employs sophisticated weighted average technique
- ☐ Cell value can exceed sample value range
 - Surface does not pass through samples
- Various types of kriging
- Uses a search radius
 - Fixed
 - Variable


Kriging methods

- □ Several methods spatial analyst supports:
 - Ordinary assumes overall area mean; no trend.
 - Universal assumes unknown trend in area mean.
- ☐ Geostatistical analyst extension supports more


Topo to Raster

- ☐ Interpolates elevation imposing constraints to ensure:
 - Connected drainage structure.
 - Correct representation of ridges and streams from input data.
- Deploys iterative finite difference interpolation technique.
 - Optimized to computational efficiency of 'local' interpolation without losing the surface continuity of global interpolation
- Designed to work intelligently with contour inputs.

Visual comparisons of Interpolators

Feature density estimation

- ☐ Count occurrences of a phenomena within an area and distribute it through the area
 - Similar to focal functions
 - Performs statistics on features
 - Population field influences density
- ☐ Use points or lines as input
- Examples
 - Population per square kilometer
 - Road density per square mile
 - The number of customers per square mile

Testing your surface

- Different interpolators will produce different results with same input data.
- No single method is more accurate than others for all situations.
- Accuracy may be determined by comparison with a second set of "withheld" samples for accuracy checking.
 - Remove random test sample points
 - Create surface
 - Interpolate
 - Did interpolator predict missing samples?
 - Repeat
 - Try with each interpolator
- □ Select the method based on knowledge of the the study area, phenomena of interest, and available resources.