

Distance Tools

Lesson 6 overview

- □ Straight-line distance
- Euclidean distance: Distance to closest store
- Euclidean allocation: ID of closest store
- Euclidean direction: Compass heading to closest store
- Weighted distance
- Inputs: Cost surface and sources
- Cost distance: How long to drive to closest store?
- Cost path: Best path to the closest store
- Corridor: Probability of travel between stores
- **Exercise**

Distance tools

The roadmap - Euclidean distance

Euclidean tools output

Calculating Euclidean distance

- □ Calculates straight-line distance
- From each cell to nearest source
- Cell center to cell center
- Output in map units (e.g., feet)
- Source cells are output as zero
- Must create sources first

Euclidean direction and allocation

- Direction output
- Compass heading from cell to nearest source, 0 to 360
- □ Allocation output
- Identity of the closest source cell

Weighted distance measurement

- □ The shortest path between points is not always the best:
- **Ten hours to climb over the mountain**
- Five hours to follow the trail around it
- □ Finds the least-cost path between cells and sources
- **Considers resistance to travel; an input cost surface**
- Weights distance with travel costs
- Result: Accumulated travel cost to every cell
- **Units are cost (e.g., time, money), not distance**

The roadmap - Weighted distance process

The roadmap - The Cost Distance tools

Creating the cost surface

Cost to travel through each cell

High values = high travel cost

Express as cost per unit distance

- Dollars per foot, hours per meter, etc.
- Usually created by modeling
 - Often considers many variables

Calculating weighting distance

- Uses distance between cells and cost to cross the cells
- Find average cost for two cells, multiply by distance
 - Orthogonal distance = (1 * cell size)
 - Diagonal distance = ($\sqrt{2^*}$ cell size)

The accumulated travel cost output

Cost accumulates away from source cells

- High values = longer travel time (for example)
- Use as:
 - A measure of accessibility
 - An input to Cost Path
 - An input to Corridor

The backlink output

Direction codes point back to the "nearest" source

- For each cell, points to the adjacent cell on least-cost path
- Required by the Cost Path tool

The allocation output

□ Assigns each cell to the nearest* source

- A method of assigning space
- Like Thiessen polygons
- □ Use as a measure of proximity I accessibility

- Nearest in terms of weighted distance: time, money, etc.

The roadmap - The Path Distance tools

The Path Distance tool

□ Similar to Cost Distance tool but more powerful

Considers other factors that affect movement

Surface Friction

Vertical Factor

True Surface Length

Horizontal Factor

The roadmap - The Cost Path tool

Finding paths

Finds least-cost paths from sources to destinations

Cost Path = raster lines (with attributes)

Required inputs

- Destinations
- Cost or Path Distance outputs
 - Accumulated travel cost raster
 - Backlink raster

The roadmap - The Corridor tool

Exercise 6 overview

Find the straight line distance to Rockbound Valley

Find the weighted distance to Rockbound Valley

- Create a cost surface
 - Speed limit of roads
 - Off-road travel costs
- Create the weighted distance and direction rasters
- Find the best path to Rockbound Valley