Ontology Design Notes

There are two broad applications of ontologies, or knowledge models, within the SEEK semantic mediation system. First, the ontologies will be used to describe ecological and environmental data sets in sufficient detail to permit the automation the discovery of data sets relevant to addressing a particular scientific question. Second, the ontologies will be used to describe data analysis tools so that the semantic mediation system can assist in the selection of tools and creation of scientific workflows given semantic descriptions of the incoming data and/or the desired results.

The ontologies described here were designed to provide a rich description of ecological and environmental data sets, so that the first of these applications could be accomplished. Relevant characteristics of a data set that need to be described using ontologies include (1) where and when the data were collected, (2) a description of what was observed, typically including the species observed, and the traits of those species that were measured (3) the experimental protocol, including sampling regimes, data collection procedures and any manipulations performed on the experiment sites.

The ontologies are written using OWL and are contained in a number of separate OWL documents. Conceptually separate parts of the model are contained in individual files that are included a broad model covering various domains of interest. This ontology is in turn used as the basis for developing more highly domain-specific models. The ontology aims to address two broad areas, scientific observations and ecological and environmental science. A number of sub-models were developed for use in describing scientific observations and data sets. These include models of space and time as used in describing data sets, and models of concepts relating to units and dimensions.

Common Modeling Concepts (Common.owl)

Common.owl defines some common classes and properties that might be useful in many ontologies. These address two issues, naming and part-whole relationships.

Naming

EcoOntThing is a subclass of Thing with a single optional hasName property. This is used as a base class for all classes, and so any class can have a name that doesn’t have to obey the restrictions, such as no spaces, that apply to the class name. A NamedThing is required to have one value for the hasName property.

Part-Whole Relationships

We use a simple model of part-whole relationships to model tow common situations. The first is composite objects made of parts that can be part of more than one composite object. This occurs for example when grouping measurements into data sets – a measurement can be part of more than one data set, with the grouping typically depending on the questions being addressed by the scientist. To model this, there is a class Composite that is composed of one or more CompositePart instances. CompositeParts do not have to uniquely belong to only one composite, but instead can be part of several Composites.

The second kind of part-whole relationship is an object that is made up of parts, and a part can only be part of that one object. In the ontology, a Whole is a Composite that is made up of Part instances. A Part is a subclass of CompositePart that can be part of only one Whole.

Descriptive Terminology (TermDefinitions.owl)

In general, terminology used within a domain often has a relatively complex structure of meanings. Some terms have multiple definitions, and the definition might depend on the context of the term’s use or on the user of the term. Some terms don’t map cleanly onto single concepts in the ontology, but instead refer to multiple concepts. The need to separate possibly ambiguous and inconsistent terminology of a particular domain from the concepts of a knowledge model is probably common. The ontology TermDefinitions.owl defines a simple model to facilitate the specification of interrelated terminology.

A Term has a definition property whole value is one or more instances of TermDefinitons, and can have Terms that are synonyms. All synonymous terms must have the same definitions, and any two terms with the same definition property values are synonyms. If a term has multiple definitions, those definitions are interpreted as a union, and so one of the definitions is applicable. A TermDefinition can denote multiple descriptive properties in the ontology.
Observations and Measurements (MeasurementBase.owl)

Concepts used to describe scientific observations and measurements, independent of a particular scientific domain, are defined in MeasurementBase.owl.

Observation and Entity

Our model of the empirical scientific process of measurement is based on two fundamental concepts, represented by the classes ObservableItem and Observation. Any observation or measurement is of something, and so an Observation has the property itemMeasured, which has a value of class ObservableItem. An ObservableItem is either and ObservableEntity or an EntityTrait. In other words, a scientist either observes the existence of something or measures some trait of the entity being observed.

An EntityTrait links two instances, the Trait that was observed and the ObservableEntity that the Trait was measured on. By decoupling the entities and traits, it is possible to extend the ontology by introducing a new trait without having to change the definition of the entity that was observed. This accommodates the typical mode of innovation in scientific research, in which novel new traits are commonly developed, whereas the entities that the scientist studies, while also evolving as scientific understanding develops, change much more slowly.

Traits

A trait is something about an entity, such as its size, that is observable or measurable. Traits are broadly divided into two categories, called DescriptiveTraits and ValueTraits. A descriptive trait is a trait whose value is a simple text description, typically from a controlled vocabulary of terms defined elsewhere in an ontology. A value trait is a trait whose measurement is expressed with a numeric value and typically has an associated physical dimension such as length or mass, or is specified to be dimensionless. The modeling of the dimension of a measurement and its associated units are discussed below.

Computed Traits

The ontology allows the description of a value trait that is computed from various other value traits. A number of classes used to express these relationships are grouped as subclasses of ComputableTraitConcepts. A ComputableTrait can have multiple definitions, each of which is an instance of the TraitDefinition class. A TraitDefinition specifies the input parameters used in its computation, can have references to the literature where the algorithm is defined and can have a text description of the algorithm. TraitDefinition could be subclassed to allow a more formal specification of the algorithm’s semantics, for example using an OpenMath specification (www.openmath.org). Inputs are defined using the ComputableTraitInput class and its subclasses. All inputs have a name. A constant-valued input is specified with ComputableTraitConst. Since a ComputableTrait can have multiple definitions, a particular value must specify the definition used in its computation and a set of bindings between the input parameters and measurements. This is accomplished using instances of the ComputableTraitSpecification and ParameterBinding classes, and is stored as part of the measurement procedure.
Measurement Procedure and Contexts

Observations are typically made at a particular time and location, and using a specified measurement procedure. We refer to these as the context of the observation. Groups of measurements often share the same context, such as time and location of the observation or the overall experimental framework that the measurement was taken within. It is also common to make multiple measurements of the same set of entities. Examples include time series of measurements taken at a single location or measurements of some property made on a spatial grid of observation sites.

Concepts relating to measurement procedures and the spatial and temporal context of measurements are subclasses of the MeasurementProcedureConcepts class. The TemporalContext and SpatialContext classes describe the spatial domain and range of times over which an ObservationStructure instance was measured.

The MeasurementProcedure class allows a measurement procedure to be described as having a number of measurable or computable traits, and so traits of the procedure can be used when computing traits of the observed entities. This is useful, for example, when converting an occurrence count to an occurrence density (count per unit area) using the size of the plot that the count occurred within.

Containment of Observations and Measurements

Since many experimental protocols include nested spatial structure, there are a number of classes that allow the hierarchical grouping of observations. These are defined in the ObservationStructure class and its subclasses. The ObservationStructure is an abstract superclass for data sets or the parts that make up a data set. It is a Composite object and so is made up of one or more parts, each of which is an instance of the ObservationPart class, which is itself a subclass of ObservationStructure. The components of an ObservationPart are allowed to be either individual observations or ObservationCollections.

An ObservationAggregate is special type of ObservationCollection that is both an Observation and an ObservationCollection. It is an observation of some entity or property that is also described as an aggregation of a group of other observations or collections. An example is a time series measurement, which for some analyses needs to be manipulated as a single entity but in a different context, the individual datapoint in the time series might need to be accessed.

At the top level there is an Experiment class, which has one or more parts that are DataSet instances and is not itself part of any composite object. A DataSet is defined to be an ObservationCollection that is part of an Experiment.

The relationships between an Experiment or DataSet and its sub-components are such that the measurementContext and itemMeasured of the sub-component must be a subset of these contexts of the containing ObservationStructure. Alternatively, a subcomponent can inherit its context from the containing ObservationStructure. This gives the flexibility to allow complex observation schemes to be described, and also allows contextual information that is common to a whole ObservationStructure to not be duplicated in its components.

Similarly, the itemMeasured property of Observation and its subcomponents must be such that any subcomponent observes the same items or a subset of the items observed in the containing ObservationSet.

These constraints on the various contexts and itemMeasured of a set of ObservationStructures are not expressed in OWL. Instead they will be implemented in an additional constraint specification layer.

Measurement

The observation or measurement of some physical entity or process is a fundamental part of experimental science. Here we use the term observation to mean the observation of the existence of an entity, while measurement is used to refer to the measurement of some trait of the observed entity. Measurement is modeled as a subclass of Observation, and the type of values of its itemMeasured property is restricted to traits of entities (class EntityTrait) rather than entities (class ObservableEntity) themselves.

Measurements are modeled using the standard statistical categories of nominal, ordinal, interval and ratio, which are also used in EML (references??). These categories are connected by subclass-superclass relationships. All interval measurements are also nominal, but not vice versa, and so OrdinalMeasurement is a subclass of NominalMeasurement. Similarly, IntervalMeasurement is a subclass of OrdinalMeasurement and RatioMeasurement is a subclass of IntervalMeasurement.

DescriptiveMeasurement is a subclass of NominalMeasurement used to represent an observation of a trait whose value is drawn from a DescriptiveTerm defined within the ontology.

Values

The values of measurements can be stored locally or can be a reference to a separate data file. In data tables, individual row-column values can be addressed, or a whole column or table of values can be referenced. It is possible to represent a date time value as a single string or as a composite of values for each of the individual components of a date time (year, month etc.). String or scalar values can be drawn from an enumerated set of values, and these enumerated values can be linked to concept instances. A string value can also be an instance of a DescriptiveTerm subclass defined in some ontology.

An Enumeration is a Whole with one or more parts that are each an EnumCode instance. An EnumCode has a value property (of class Value) and refers to an instance of any class. This allows an enumerated set to define code that appear in a data table and refer to arbitrary instance data.

Units and Dimension (Units.owl)

The values of interval and ratio measurements are numeric values, and these values always have dimensions and units associated with them. Dimension is a property of the trait that was measured that describes the physical quantity that was measured, such as length or time. A unit is a property of a particular measurement of a trait. A unit is a standard physical quantity of the dimension of interest with which the measurement is compared to express its value. The model of units and dimensions closely follows the NIST model (http://physics.nist.gov/cuu/Units/units.html) and the model in the Ecological Metadata Language (EML) (URL???).

There are seven instances of the BaseDimension class, for the seven fundamental dimensions of length, mass, time, temperature, amount, luminosity and current, and an eighth instance for dimensionless quantities. These seven fundamental dimensions are linked to a fundamental unit in order to connect the dimension system with the unit system. More complex dimensions are represented in two stages. First, a SimpleCompoundDimension is composed of more than one instance of SimpleDimensionPart, which are multiplied together to give the dimension (note that this relationship is implicit rather than being represented in the ontology). SimpleDimensionPart has a base dimension and a power that the base dimension is raised to. More complex dimensions are represented by using the CompoundDerivedDimension and the corresponding CompoundDimensionPart classes. The parts of a CompoundDerivedDimension can be any DerivedDimension. This allows the dimension of measurements that were formed from the product or ratio of two or more other measurements to retain information about the dimension of the underlying measurements.

The ontology assumes that the SI units are the primary system of units. All Units have a single dimension. The seven fundamental SI units are instances of the FundamentalSIUnit class, which is distinguished by requiring that the dimension be of class BaseDimension. All non-SI units can be related to an SI unit through the specification of a multiplier and offset for performing the unit conversion.

Time and Space (TimeAndSpace.owl)

The specification of regions of space and points or durations of time is an important part of describing observations and measurements. Spatial regions in ecology and environmental science are defined relative to the surface of the earth. The necessary classes are subclasses of ObservableItem, as a spatial region can be the subject of a measurement, as well as providing the context for a measurement.

A point in time is an instance of either the DateTime or NamedTime classes. Regularly spaced points in time are represented with the RegularTimeSet class. A duration of time can a NamedDuration, a single interval in time (SimpleDuration), or can be built up of various discontinuous intervals (ComplexDuration).

Geospatial regions are specified using various subclasses of GeoSpatialRegion. Any region can be specified as being contained in another region. Points, lines, areas and volumes can be specified either with a name or geographic coordinates. The ComplexGeospatialRegion class allows regions to be grouped.

Various concepts used to specify geographic coordinates are defined as subclasses of LocationConcepts. They allow the description of points and contiguous or disconnected regions in one to three dimensions using geospatial coordinates or geometric coordinates relative to an origin.

Ecology (EcologicalConcepts.owl)

Ecology is modeled as the study of a system’s components and the changes over time in those components. The system components are typically biotic entities, though sometime abiotic entities are also seen as part of the system of interest. Changes in the system occur due to processes that affect the entities in the system, interactions between the entities, either biotic or abiotic, that make up a system, and interactions between the system’s components and its environment.

Entities

The EcologicalEntity class has two subclasses, BioticEntity and AbioticEntity, which reflect a fundamental distinction recognized by ecologists. In addition, there is a third subclass, AggregateEcologicalEntity, that is used to represent concepts such as Ecosystem which have both biotic and abiotic components, and which are often described through the identification of various subcomponents.

Biotic entities are separated into two groups, either individual organisms or some kind of aggregate of organisms. These in turn are divided into whole organism(s) or parts of organisms. Aggregates are often grouped at the level of species, but ecologists also use many other aggregations. Among these are taxonomic groupings resolved to something other than the species level, organisms referred to by common name rather than a taxonomic designation, organisms with the same functional role in the ecosystem, and organism parts such as leaves.

Processes and Interactions

An EcologicalProcess is anything that leads to some change over time in the entity or entities of interest. An important subgroup of EcologicalProcesses is EcologicalInteractions between two or more EcologicalEntities. An interaction occurs over time and leads to a change in one or more of the interacting entities and so is a type of process.

The first subdivision of EcologicalInteractions is based on their direction. Interactions between entities are modeled either as directed, such as a predator-prey interaction, or undirected, such as competition. Directed interactions are further subdivided into interactions in which there is material exchange between the interacting entities, such as the energy and nutrient exchange that occurs during a predator-prey interaction, and interactions in which entities exchange information, such as chemical or audible signals.

Traits

The traits of entities and interactions that a scientist chooses to observe are typically influenced by the scientist’s theories and hypotheses. The same is true of the way in which the scientist subdivides the observed world into individual entities and interactions between those entities, but traits that are of scientific interest change more frequently than the entities themselves. The ontology is designed around this understanding, and so EcologicalProperty classes are defined independent of EcologicalEntity and EcologicalInteraction classes, and are linked to entities and interactions through an owl:ObjectTypeProperty called . This flexible architecture allows new properties to be defined and attached to entities and interactions without having to refine the underlying entity and interaction classes.

Environment

A system of interest is typically compised of one or more entities that exist within an environment. An EcologicalEnvironment describes the environment of one or more EcologicalEntities. The environment is itself one or more biotic or abiotic entities, as the distinction between entity and environment is dependent on the perspective of the researcher. The distinction is that in a particular experimental context, the environment is seen as external to and not influenced by the system, but the environment might influence the system.

Ecological Terminology

Descriptive terms are frequently attached to ecological entities or interactions. For example, a scientist might label a species as a predator or an omnivore. Descriptive terms, such as terms used to describe the feeding behavior of various organisms, are difficult to model and categorize because they often do not fit cleanly into a set of independent categories. A second problem is that the terms are sometimes ambiguous and there is not clear agreement among domain scientists to a term’s meaning. Despite these problems, descriptive terms are widely used and can give important insight into a scientist’s understanding of the ecological role of the entity in question.

By analyzing the terms used in the ecological literature to describe feeding behaviors, we have been able to identify a small set of independent underlying concepts that can be used to define many of these terms. This idea will be illustrated by examining the terms predator, parasite and omnivore. Omnivore is not clearly defined in the ecological literature. Sometimes, omnivore is used to mean an organism that consumes both plants and animals. On other occasions, omnivore is used to describe an organism that consumes only animals, but those animals are at different trophic levels in the food web (refs). Thus omnivore has two distinct definitions, which we have named TaxonomicOmnivore and TrophicOmnivore respectively. The term predator is used to refer to an animal that kills and eats other animals. The term parasite is also used to refer to an animal that consumes another animal, termed the host, but this interaction occurs for an extended period of time and does not kill the host. Thus predators and parasites can be distinguished by both the relative duration of the interaction between the two organisms and whether that interaction results in the immediate death of the organism being consumed.

These and many other descriptions of feeding behaviors can be broken into several independent components. They are the taxonomic categorization of the prey, the trophic level of the prey, the relative duration of the feeding interaction, whether the feeding interaction leads to the death of the prey and the part of the prey consumed. Not all of these descriptors are necessary to describe every term encountered, and this list is probably not exhaustive. It does provide a useful way of defining many of the terms used to describe feeding behaviors.

Concepts related to the specification of ecological terminology are derived from the genereal model for terminology defined in Term.owl. The potentially ambiguous commonly used terminology are referred to as EcologicalTerms, a subclass of the concept Term. The underlying descriptive concepts we identified are referred to as EcologicalDescriptions. EcologicalTerms are defined using one or more EcologicalDescription. Descriptions and terms can be attached to entities through the use of the DescriptiveMeasurement and EntityDescription classes. They are modeled as observations of traits of entities that have as their value a term or one or more descriptive concepts.

Many of the underlying descriptive terms can be expressed as restrictions on values of various traits in the ontology, though the relationships are usually too complex to be expressible using OWL. For example, if an instance of a BioticEntity has a trait that it is a TaxonomicOmnivore, then it must be a member of the animal kingdom. In addition, if it is the recipient of energy from any other BioticEntities, there must be more than one such interaction, and the entities that the omnivore receives energy from must belong to more than one kingdom. These constraints can be used to test the consistency of the instance data. They can also be used to infer properties of entities based on the knowledge already in the system.

Hierarchical Classification and Taxonomic Identifiers (Hierarchy.owl, TaxonomicID.owl)

The ontology includes a simple ontology for representing taxonomic identifiers that can have the seven main taxonomic ranks. Instances of ranks point to higher and lower ranks so that the hierarchy of ranks can be traversed. The names of taxonomic ranks can be stored locally or can be referenced to an external data file.

Ecological Models and Analysis Methods (EcologicalModels.owl)

Since ecology is modeled as a science of entities and interactions, many models in ecology are models of interacting entities. The model ontology allows the rules of these interactions to be specified. Models are categorized using the common ecological divisions of individual, population, community and ecosystem, with further divisions within each of these broad categories.

Models are considered to be composed model entities, interactions and parameters. Each of these is further subdivided like the underlying model, into individual, population, community and ecosystem model concepts. Parameters can be associated with entities or interactions. For example, a consumer in Lotka-Volterra model (LVConsumer) has a DeathRate parameter. An interaction in a Lotka-Volterra model (LVPredPreyInteraction) has ConversionRate and CaptureRate parameters. A particular instance of a model is built by creating a set of model entities and, where appropriate, model interactions with specific parameter values.

This ontology also contains the base classes for a taxonomy of ecological data analysis techniques. The base class DataAnalysisMethod is a subclass of the concept container EcologicalAnalysisConcepts. This base class has five subclasses for five broad areas of data that are worked with by ecologists: organism, population, community, ecosystem and environment.

Ecological Networks (Networks.owl, EcologicalNetworks.owl)

A variety of interaction networks are studied by ecologists, the most familiar being food webs, which records who eats whom in an ecological community. Networks connect nodes with either directed or undirected links. A food web is a network with directed links (DirectedNetwork), where each node represents a set of organisms and each link represents a feeding interaction, in which biomass and therefore energy is transferred from some prey to the consumer.

In addition to a set of entities associated with food webs, there is also a set of properties associated with the entities. Properties associated with a FoodWeb as a whole include connectance, the number of links and the number of species. Properties associated with a node in the food web include its trophic level, connectivity, generality and vulnerability.

Ecological Niche Modeling (NicheModeling.owl)

Ecological niche models are a category of ecological data analysis methods that are used to model the spatial distribution of species. The input data are the locations of the existence of an organism, and environmental conditions at those locations. The output is a prediction of the niche of the organism, or the conditions under which the organism can survive.

To support this modeling, the EcologicalNicheModeling ontology contains extensions of EcologicalModels to describe the analysis techniques and the concept of an ecological niche. An EcologicalNiche is a BioticEntityTrait. A niche is composed of a number of EcoNicheDimension instances. Each dimension corresponds to a single environmental condition. The analysis is divided into two parts, the prediction of the niche from organism occurrence data and environmental condition data and the projection of the niche given a set on environmental conditions to predict where an organism might occur. These are called EcologicalNichePrediction and EcologicalNicheProjection respectively.

Biodiversity Indices (Biodiversity.owl)

EcologicalConcepts.owl defines BiodiversityTrait and two subclasses, EvennessIndex and RichnessIndex. These index classes are also subclassed from ComputableProperty, so that you can express the fact that they are computable from various other properties, such as the species richness and population (individual count) of a community. Specific indices, which are instances of these index categories, are defined in Biodiversity.owl.

Statistical Methods (StatisticalAnalysis.owl)

Many data analysis procedures used in ecological and environmental sciences are statistical methods that can be applied to data from many different scientific domains. StatisticalAnalysis.owl defines concepts that are based in statistics and are independent of the domain in which these methods are applied.

The top-level concepts are Variable, Sample and AnalysisProcedure. Analysis procedures are categorized based on their applicability to data sets with different numbers of variables and samples. This closely follows the categorization presented by Sokal and Rohlf (1995).

Creating Instance Data

In the following examples, a data file with the following columns is assumed:

Genus Species Count Latitude Longitude

Each row in the table is an observation of a number of a particular species at a particular location. To fully describe the data, information about when and how the observations were made is necessary. Hopefully this is in the associated metadata.

There are two approaches to creating instance data. In the first, the data file is read in and instances are created for all fields in the data file. For a particular row, where the values of Genus, Species, Count, Latitude and Longitude are val1 – val5 respectively, instances are built as follows:

instanceOf mb:RatioMeasurement(

 mb:unit = null,

 mb:value=instanceOf mb:LocalInteger(

 mb:dataValue=val3

)

 mb:measurementContext=instanceOf ts:LocationContext(

 ts:location=instanceOf GeogCoordPoint(

 ts:pointSpecifier = instanceOf ts:LatLongPoint(

 ts:latitude=instanceOf ts:DdSpecifier(

 ts:decimalDegrees=instanceOf mb:LocalFloatingPt(

 mb:dataValue=val4

)

)

 ts:longitude=instanceOf ts:DdSpecifier(

 ts:decimalDegrees=instanceOf mb:LocalFloatingPt(

 mb:dataValue=val5

)

)

)

)

)

 mb:itemMeasured=instance of eco:Count(

 eco:propertyEntity=instanceOf eco:TaxonomicGroup(

 eco:taxonomicID=instanceOf taxid:SimpleTaxonomicIdentifier(

 taxid:genus=inst(thisGenus)=instanceOf taxid:Genus(

 taxid:rankName=mb:LocalString(

 mb:dataValue=val1

)

 taxid:subCategoryInstance=thisSpecies

)

 taxid:species=inst(thisSpecies)=instanceOf taxid:Species(

 taxid:rankName=instanceOf mb:LocalString(

 mb:dataValue=val4

)

 taxid:superCategoryInstance=inst(thisGenus)

)

)

)

 eco:propertyDimension=inst(units:dimensionless)

)

)

In this approach, these measurements could all belong to the same DataSet instance, which could have information that is common across all the data points. The taxonomic identifier could be built from the genus and species names in the row from the data set, or the genus and species names could be used to look up a taxonomic identifier in a taxonomic database, and then that identifier could be used.

In the second approach, the data remains in a separate file, and so all values are referenced to that file.

inst(thisTable)=instanceOf mb:DataTableReference(

 mb:uri=<data file uri>

 mb:firstRow=1

 mb:firstColumn=1

)
inst(thisDataset)=instanceOf mb:DataSet(

 prop:hasPart=inst(thisDataTable)=instanceOf mb:DataTable(

 prop:partOf=thisDataset

 prop:hasPart=instanceOf mb:RatioMeasurement(

 prop:partOf=thisDataTable

 mb:unit = null,

 mb:value=instanceOf mb:IntegerRef(

 mb:storageType= mb:xmlInteger

 mb:dataReference=instanceOf mb:DataTableColumn(

 mb:column=3

 mb:tableReference=inst(thisTable)

)

)

 mb:measurementContext=instanceOf ts:LocationContext(

 ts:location=instanceOf GeogCoordPoint(

 ts:pointSpecifier = instanceOf ts:LatLongPoint(

 ts:latitude=instanceOf ts:DdSpecifier(

 ts:decimalDegrees=instanceOf mb:FloatingPtRef(

 mb:dataReference=instanceOf mb:DataTableColumn(

 mb:column=4

 mb:tableReference=inst(thisTable)

)

 mb:storageType=inst(mb:xmlFloat)

)

)

 ts:longitude=instanceOf ts:DdSpecifier(

 ts:decimalDegrees=instanceOf mb:FloatingPtRef(

 mb:dataReference=instanceOf mb:DataTableColumn(

 mb:column=5

 mb:tableReference=inst(thisTable)

)

 mb:storageType=inst(mb:xmlFloat)

)

)

)

)

)

)

 mb:itemMeasured=instance of eco:Count(

 eco:propertyEntity=instanceOf eco:TaxonomicGroup(

 eco:taxonomicID=instanceOf taxid:SimpleTaxonomicIdentifier

 (

 taxid:genus=inst(thisGenus)=instanceOf taxid:Genus(

 taxid:rankName=mb:StringRef(

 mb:dataReference=instanceOf mb:DataTableColumn(

 mb:column=1

 mb:tableReference=inst(thisTable)

)

 mb:storageType=inst(mb:xmlString)

)

 taxid:subCategoryInstance=thisSpecies

)

 taxid:species=inst(thisSpecies)=instanceOf taxid:Species(

 taxid:rankName=instanceOf mb:StringRef (

 mb:dataReference=instanceOf mb:DataTableColumn(

 mb:column=2

 mb:tableReference=inst(mb:thisTable)

)

 mb:storageType=inst(mb:xmlString)

)

 taxid:superCategoryInstance=inst(thisGenus)

)

)

)

 eco:propertyDimension=inst(units:dimensionless)

)

)

)

)

Biodiversity Index

This example is of a biodiversity index that is computed from other measured properties.

InstanceOf(RatioMeasurement)

{

 itemMeasured=MargalefIndex

 value=<someNumber>

 measurementProcedure=InstanceOf(ComputablePropertySpecification)

 {

 definition=MargalefIndexDef

 parameterBindings=InstanceOf(ParameterBinding)

 {

 parameterValue=InstanceOf(some measurement of SpeciesCnt)

 propertyParameter=CommunitySpeciesCount)

 }

 InstanceOf(parameterBinding)

 {

 parameterValue=InstanceOf(some measurement of IndividualCount)

 propertyParameter=CommunityIndividualCount)

 }

 }

 <plus other info like measurementContexts>

}

